(河源金剛砂)實景效果(河源金剛砂)
碳化硅至少有70種結晶型態。α-碳化硅為常見的一種同質異晶物,在高于2000 °C高溫下形成,具有六角晶系結晶構造(似纖維鋅礦)。β-碳化硅,立方晶系結構,與鉆石相似,則在低于2000 °C生成,結構如頁面附圖所示。雖然在異相觸媒擔體的應用上,因其具有比α型態更高之單位表面積而引人注目,而另一種碳化硅,μ-碳化硅為穩定,且碰撞時有較為悅耳的聲音,但直至今日,這兩種型態尚未有商業上之應用。
因其3.2g/cm3的比重及較高的升華溫度(約2700 °C) [1] ,碳化硅很適合做為軸承或高溫爐之原料物件。在任何已能達到的壓力下,它都不會熔化,且具有相當低的化學活性。由于其高熱導性、高崩潰電場強度及高電流密度,在半導體高功率元件的應用上,不少人試著用它來取代硅[1]。此外,它與微波輻射有很強的耦合作用,并其所有之高升華點,使其可實際應用于加熱金屬。
純碳化硅為無色,而工業生產之棕至黑色系由于含鐵之不純物。晶體上彩虹般的光澤則是因為其表面產生之二氧化硅保護層所致。
物質結構
純碳化硅是無色透明的晶體。工業碳化硅因所含雜質的種類和含量不同,而呈淺黃、綠、藍乃至黑色,透明度隨其純度不同而異。
碳化硅晶體結構分為六方或菱面體的 α-SiC和立方體的β-SiC(稱立方碳化硅)。α-SiC由于其晶體結構中碳和硅原子的堆垛序列不同而構成許多不同變體,已發現70余種。β-SiC于2100℃以上時轉變為α-SiC。碳化硅的工業制法是用優質石英砂和石油焦在電阻爐內煉制。煉得的碳化硅塊,經破碎、酸堿洗、磁選和篩分或水選而制成各種粒度的產品。
制作工藝
由于天然含量甚少,碳化硅主要多為人造。常見的方法是將石英砂與焦炭混合,利用其中的二氧化硅和石油焦,加入食鹽和木屑,置入電爐中,加熱到2000°C左右高溫,經過各種化學工藝流程后得到碳化硅微粉。
碳化硅(SiC)因其很大的硬度而成為一種重要的磨料,但其應用范圍卻超過一般的磨料。例如,它所具有的耐高溫性、導熱性而成為隧道窯或梭式窯的窯具材料之一,它所具有的導電性使其成為一種重要的電加熱元件等。制備SiC制品首先要制備SiC冶煉塊[或稱:SiC顆粒料,因含有C且超硬,因此SiC顆粒料曾被稱為:金剛砂。但要注意:它與天然金剛砂(也稱:石榴子石)的成分不同。在工業生產中,SiC冶煉塊通常以石英、石油焦等為原料,輔助回收料、乏料,經過粉磨等工序調配成為配比合理與粒度合適的爐料(為了調節爐料的透氣性需要加入適量的木屑,制備綠碳化硅時還要添加適量食鹽)經高溫制備而成。高溫制備SiC冶煉塊的熱工設備是專用的碳化硅電爐,其結構由爐底、內面鑲有電極的端墻、可卸式側墻、爐心體(全稱為:電爐中心的通電發熱體,一般用石墨粉或石油焦炭按一定的形狀與尺寸安裝在爐料中心,一般為圓形或矩形。其兩端與電極相連)等組成。該電爐所用的燒成方法俗稱:埋粉燒成。它一通電即為加熱開始,爐心體溫度約2500℃,甚至更高(2600~2700℃),爐料達到1450℃時開始合成SiC(但SiC主要是在≥1800℃時形成),且放出co。然而,≥2600℃時SiC會分解,但分解出的si又會與爐料中的C生成SiC。每組電爐配備一組變壓器,但生產時只對單一電爐供電,以便根據電負荷特性調節電壓來基本上保持恒功率,大功率電爐要加熱約24 h,停電后生成SiC的反應基本結束,再經過一段時間的冷卻就可以拆除側墻,然后逐步取出爐料。
在電能消耗上,照明產品成為繼空調、采暖電器之后的第二能耗大戶。照明能耗占到整個建筑電量能耗的25%~35%,占全國電力總消耗量的13%。而建筑照明在使用的過程中,除了燈源自身消耗的電能之外,其燈具也會產生相應的熱量,這部分熱量又是構成建筑能耗大戶空調、采暖的主要熱源之一。照明節電已成為節能的重要方面。目前的照明節能潛力很大,一般節能方案均能達到節約2%~35%,保守按2%的計算,全國節約的電能價值可觀,可想而知在國民經濟中起到很大的作用。
關于生物質供熱和生物質熱電聯產發展的思路和產業政策,有一種聲音認為所有的生物質發電項目都應該改為“熱電聯產”,否則將不予以支持。這是對產業發展極為不利的“一刀切”的短視做法。實際上,我國十四年前審批的生物質發電示范項目,就已經明確有供熱的要求。但是我們實際的產業發展很不成熟。在這種情況下,我們提出了有條件的地方積極發展生物質熱電聯產,暫不具備熱電聯產條件的鼓勵單純發電項目,同時預留供熱。在隨后的幾年中,實踐發現很快就會帶動區域工業園區供熱發展,帶動了民用供熱發展。
兩種工藝簡介C:SS工藝流程:綜合廢水調節池一級水解酸化池C:SS池二級水解酸化池接觸氧化池二沉池排水。SMBBR工藝是基于移動床生物膜法(MBBR)的一種改進技術,其兼具傳統流化床和生物接觸氧化法兩者的優點,選用特殊的SDC-3型生物載體作為填料,選用特定的具有很強的生命力和旺盛的繁殖能力,能適應各種不良的環境條件的高活性反硝化菌DNF49作為菌種,組合成SMBBR工藝。SMBBR通過曝氣和水流的提升作用使填料處于流化狀態,提高廢水與懸浮填料的接觸次數,延長反應時間且動力消耗極低。